Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Semin Fetal Neonatal Med ; : 101524, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609800

RESUMO

Fetal neurology encompasses the full spectrum of neonatal and child neurology presentations, with complex additional layers of diagnostic and prognostic challenges unique to the specific prenatal consultation. Diverse genetic and acquired etiologies with a range of potential outcomes may be encountered. Three clinical case presentations are discussed that highlight how postnatal phenotyping and longitudinal follow-up are essential to address the uncertainties that arise in utero, after birth, and in childhood, as well as to provide continuity of care.

2.
Am J Hum Genet ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38565148

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

4.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37857482

RESUMO

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Recém-Nascido , Feminino , Humanos , Corpo Caloso , Agenesia do Corpo Caloso/genética , Malformações do Sistema Nervoso/genética , Deficiência Intelectual/genética , Cognição , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943620

RESUMO

Transmembrane and tetratricopeptide repeat 4 (Tmtc4) is a deafness gene in mice. Tmtc4-KO mice have rapidly progressive postnatal hearing loss due to overactivation of the unfolded protein response (UPR); however, the cellular basis and human relevance of Tmtc4-associated hearing loss in the cochlea was not heretofore appreciated. We created a hair cell-specific conditional KO mouse that phenocopies the constitutive KO with postnatal onset deafness, demonstrating that Tmtc4 is a hair cell-specific deafness gene. Furthermore, we identified a human family in which Tmtc4 variants segregate with adult-onset progressive hearing loss. Lymphoblastoid cells derived from multiple affected and unaffected family members, as well as human embryonic kidney cells engineered to harbor each of the variants, demonstrated that the human Tmtc4 variants confer hypersensitivity of the UPR toward apoptosis. These findings provide evidence that TMTC4 is a deafness gene in humans and further implicate the UPR in progressive hearing loss.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Cóclea/metabolismo , Surdez/genética , Cabelo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo
6.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37905009

RESUMO

Cisplatin is a common chemotherapy drug with a nearly universal side effect of ototoxicity. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate, is associated with reduced survival in disseminated hepatoblastoma, highlighting the need for more specific drugs. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo , and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin and UPR-modulating drugs, and UPR marker gene expression and cell death measured. Treatment with ISRIB, a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested in an in vivo mouse model of cisplatin ototoxicity and well as a head and neck squamous cell carcinoma (HNSCC) cell-based assay of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.

7.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873196

RESUMO

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and with new innovative methods can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the GREGoR consortium. Each family's CNV data was analyzed using the seqr platform and candidate CNVs classified using the 2020 ACMG/ClinGen CNV interpretation standards. We developed additional evidence criteria to address situations not covered by the current standards. The addition of CNV calling to exome analysis identified causal CNVs for 173 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb with estimates that 44% would not have been detected by standard chromosomal microarrays. The causal CNVs consisted of 141 deletions, 15 duplications, 4 suspected complex structural variants (SVs), 3 insertions and 10 complex SVs, the latter two groups being identified by orthogonal validation methods. We interpreted 153 CNVs as likely pathogenic/pathogenic and 20 CNVs as high interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

9.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421948

RESUMO

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , Fenótipo
10.
Trends Mol Med ; 29(9): 726-739, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422363

RESUMO

RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Transtornos do Neurodesenvolvimento/genética , Mutação , RNA/metabolismo , Neoplasias/genética , Antígenos de Histocompatibilidade Menor
11.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185208

RESUMO

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Assuntos
Deficiência Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagem , Genótipo , Deficiência Intelectual/genética , Fenótipo , Convulsões/genética
12.
NPJ Genom Med ; 8(1): 10, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236975

RESUMO

The diagnostic yield of exome sequencing (ES) has primarily been evaluated in individuals of European ancestry, with less focus on underrepresented minority (URM) and underserved (US) patients. We evaluated the diagnostic yield of ES in a cohort of predominantly US and URM pediatric and prenatal patients suspected to have a genetic disorder. Eligible pediatric patients had multiple congenital anomalies and/or neurocognitive disabilities and prenatal patients had one or more structural anomalies, disorders of fetal growth, or fetal effusions. URM and US patients were prioritized for enrollment and underwent ES at a single academic center. We identified definitive positive or probable positive results in 201/845 (23.8%) patients, with a significantly higher diagnostic rate in pediatric (26.7%) compared to prenatal patients (19.0%) (P = 0.01). For both pediatric and prenatal patients, the diagnostic yield and frequency of inconclusive findings did not differ significantly between URM and non-URM patients or between patients with US status and those without US status. Our results demonstrate a similar diagnostic yield of ES between prenatal and pediatric URM/US patients and non-URM/US patients for positive and inconclusive results. These data support the use of ES to identify clinically relevant variants in patients from diverse populations.

13.
J Hum Genet ; 68(4): 291-298, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36536096

RESUMO

A recent study revealed that monoallelic missense or biallelic loss-of-function variants in the chloride voltage-gated channel 3 (CLCN3) cause neurodevelopmental disorders resulting in brain abnormalities. Functional studies suggested that some missense variants had varying gain-of-function effects on channel activity. Meanwhile, two patients with homozygous frameshift variants showed severe neuropsychiatric disorders and a range of brain structural abnormalities. Here we describe two patients with de novo CLCN3 variants affecting the same amino acid, Gly327 (p.(Gly327Ser) and p.(Gly327Asp)). They showed severe neurological phenotypes including global developmental delay, intellectual disability, hypotonia, failure to thrive, and various brain abnormalities. They also presented with characteristic brain and ophthalmological abnormalities, hippocampal and retinal degradation, which were observed in patients harboring homozygous loss-of-function variants. These findings were also observed in CLCN3-deficient mice, indicating that the monoallelic missense variant may also have a dominant negative effect. This study will expand the phenotypic spectrum of CLCN3-related disorders.


Assuntos
Encefalopatias , Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome
14.
Neurol Genet ; 8(5): e200018, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36531974

RESUMO

Background and Objectives: Deletions and duplications at 16p11.2 (BP4 to BP5; 29.5-30.1 Mb) have been associated with several neurodevelopmental and neuropsychiatric disorders including autism spectrum disorder, intellectual disability (ID), and schizophrenia. Seizures have also been reported in individuals with these particular copy number variants, but the epilepsy phenotypes have not been well-delineated. We aimed to systematically characterize the seizure types, epilepsy syndromes, and epilepsy severity in a large cohort of individuals with these 16p11.2 deletions and duplications. Methods: The cohort of ascertained participants with the recurrent 16p11.2 copy number variant was assembled through the multicenter Simons Variation in Individuals Project. Detailed data on individuals identified as having a history of seizures were obtained using a semistructured phone interview and review of medical records, EEG, and MRI studies obtained clinically or as part of the Simons Variation in Individuals Project. Results: Among 129 individuals with the 16p11.2 deletion, 31 (24%) had at least one seizure, including 23 (18%) who met criteria for epilepsy; 42% of them fit the phenotype of classic or atypical Self-limited (Familial) Infantile Epilepsy (Se(F)IE). Among 106 individuals with 16p11.2 duplications, 16 (15%) had at least one seizure, including 11 (10%) who met criteria for epilepsy. The seizure types and epilepsy syndromes were heterogeneous in this group. Most of the individuals in both the deletion and duplication groups had well-controlled seizures with subsequent remission. Pharmacoresistant epilepsy was uncommon. Seizures responded favorably to phenobarbital, carbamazepine, and oxcarbazepine in the deletion group, specifically in the Se(F)IE, and to various antiseizure medications in the duplication group. Discussion: These findings delineate the spectrum of seizures and epilepsies in the recurrent 16p11.2 deletions and duplications and provide potential diagnostic, therapeutic, and prognostic information.

15.
Nat Commun ; 13(1): 6570, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323681

RESUMO

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Humanos , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Bases de Dados Genéticas
16.
Dev Cell ; 57(20): 2381-2396.e13, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36228617

RESUMO

Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.


Assuntos
Cinesinas , Neurônios , Humanos , Animais , Camundongos , Cinesinas/genética , Neurônios/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Apoptose , Encéfalo/metabolismo
17.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980381

RESUMO

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Assuntos
Transtornos do Neurodesenvolvimento , Miosina não Muscular Tipo IIB , Actinas , Cílios/genética , Proteínas Hedgehog/genética , Humanos , Cadeias Pesadas de Miosina/genética , Transtornos do Neurodesenvolvimento/genética , Miosina não Muscular Tipo IIB/genética
18.
Am J Med Genet C Semin Med Genet ; 190(2): 222-230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35838066

RESUMO

In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.


Assuntos
Triagem Neonatal , Transtornos do Neurodesenvolvimento , Lactente , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Pais
19.
Ann Clin Transl Neurol ; 9(8): 1276-1288, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871307

RESUMO

OBJECTIVE: This study delineates the clinical and molecular spectrum of ANKLE2-related microcephaly (MIC), as well as highlights shared pathological mechanisms between ANKLE2 and the Zika virus. METHODS: We identified 12 individuals with MIC and variants in ANKLE2 with a broad range of features. Probands underwent thorough phenotypic evaluations, developmental assessments, and anthropometric measurements. Brain imaging studies were systematically reviewed for developmental abnormalities. We functionally interrogated a subset of identified ANKLE2 variants in Drosophila melanogaster. RESULTS: All individuals had MIC (z-score ≤ -3), including nine with congenital MIC. We identified a broad range of brain abnormalities including simplified cortical gyral pattern, full or partial callosal agenesis, increased extra-axial spaces, hypomyelination, cerebellar vermis hypoplasia, and enlarged cisterna magna. All probands had developmental delays in at least one domain, with speech and language delays being the most common. Six probands had skin findings characteristic of ANKLE2 including hyper- and hypopigmented macules. Only one individual had scalp rugae. Functional characterization in Drosophila recapitulated the human MIC phenotype. Of the four variants tested, p.Val229Gly, p.Arg236*, and p.Arg536Cys acted as partial-loss-of-function variants, whereas the c.1421-1G>C splicing variant demonstrated a strong loss-of-function effect. INTERPRETATION: Deleterious variants in the ANKLE2 gene cause a unique MIC syndrome characterized by congenital or postnatal MIC, a broad range of structural brain abnormalities, and skin pigmentary changes. Thorough functional characterization has identified shared pathogenic mechanisms between ANKLE2-related MIC and congenital Zika virus infection. This study further highlights the importance of a thorough diagnostic evaluation including molecular diagnostic testing in individuals with MIC.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Infecção por Zika virus , Zika virus , Animais , Drosophila melanogaster , Humanos , Microcefalia/genética , Síndrome , Zika virus/genética , Infecção por Zika virus/congênito , Infecção por Zika virus/diagnóstico
20.
Pediatr Neurol ; 131: 1-3, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35436645

RESUMO

BACKGROUND: GLI3 encodes a zinc finger transcription factor that plays a role in the sonic hedgehog pathway. Germline pathogenic GLI3 variants are associated with Greig cephalopolysyndactyly and Pallister-Hall syndromes, two syndromes involving brain malformation and polydactyly. METHODS: We identified patients with pathogenic GLI3 variants and brain malformations in the absence of polydactyly or other skeletal malformation. RESULTS: Two patients were identified. Patient #1 is a 4-year-old boy with hypotonia and global developmental delay. Brain MRI showed a focal cortical dysplasia, but he had no history of seizures. Genetic testing identified a de novo likely pathogenic GLI3 variant: c.4453A>T, p.Asn1485Tyr. Patient #2 is a 4-year-old boy with hypotonia, macrocephaly, and global developmental delay. His brain MRI showed partial agenesis of the corpus callosum, dilatation of the right lateral ventricle, and absent hippocampal commissure. Genetic testing identified a de novo pathogenic GLI3 variant: c.4236_4237del, p.Gln1414AspfsTer21. Neither patient had polydactyly or any apparent skeletal abnormality. CONCLUSIONS: These patients widen the spectrum of clinical features that may be associated with GLI3 pathogenic variants to include hypotonia, focal cortical dysplasia, and other brain malformations, in the absence of apparent skeletal malformation. Further study is needed to determine if GLI3 pathogenic variants are a more common cause of focal cortical dysplasia or corpus callosum agenesis than presently recognized.


Assuntos
Malformações do Desenvolvimento Cortical , Polidactilia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pré-Escolar , Proteínas Hedgehog/genética , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Polidactilia/complicações , Polidactilia/diagnóstico por imagem , Polidactilia/genética , Síndrome , Proteína Gli3 com Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...